Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1151057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123843

RESUMO

Two major future challenges are an increase in global earth temperature and a growing world population, which threaten agricultural productivity and nutritional food security. Underutilized crops have the potential to become future climate crops due to their high climate-resilience and nutritional quality. In this context, C4 pseudocereals such as grain amaranths are very important as C4 crops are more heat tolerant than C3 crops. However, the thermal sensitivity of grain amaranths remains unexplored. Here, Amaranthus hypochondriacus was exposed to heat stress at the vegetative and reproductive stages to capture heat stress and recovery responses. Heat Shock Factors (Hsfs) form the central module to impart heat tolerance, thus we sought to identify and characterize Hsf genes. Chlorophyll content and chlorophyll fluorescence (Fv/Fm) reduced significantly during heat stress, while malondialdehyde (MDA) content increased, suggesting that heat exposure caused stress in the plants. The genome-wide analysis led to the identification of thirteen AhHsfs, which were classified into A, B and C classes. Gene expression profiling at the tissue and developmental scales resolution under heat stress revealed the transient upregulation of most of the Hsfs in the leaf and inflorescence tissues, which reverted back to control levels at the recovery time point. However, a few Hsfs somewhat sustained their upregulation during recovery phase. The study reported the identification, physical location, gene/motif structure, promoter analysis and phylogenetic relationships of Hsfs in Amaranthus hypochondriacus. Also, the genes identified may be crucial for future gene functional studies and develop thermotolerant cultivars.

2.
Front Plant Sci ; 8: 509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443109

RESUMO

Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon, we investigated phosphorus uptake1 (Pup1) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 (PSTOL1) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1-K46, a diagnostic marker for PSTOL1, however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars.

3.
Carbohydr Polym ; 106: 276-82, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24721079

RESUMO

Modification of biopolymers by oxidation is an easy process to develop effective adsorbents for the removal of toxic metal ions from their aqueous solutions. In the present study, guar gum (GG) was crosslinked with epichlorohydrin and then oxidized to the polydialdehyde form (GG-clPDA). The latter was converted to a Schiff-base, GG-clCHN(CH2)6NCHGG, by reaction with hexamethylenediamine. Different forms of the modified GG were characterized by SEM, FTIR and XRD and investigated as adsorbents for the removal of Hg(II) ions from their aqueous solutions. The adsorption process was carried out through the variation of time, temperature, pH and initial concentration of Hg(II) ions. GG-clCHN(CH2)6NCHGG was observed to be an efficient adsorbent with a maximum adsorption capacity of 41.13 mg/g. It is reusable up to five cycles at the optimum conditions obtained for the maximum ions uptake. The kinetic data generated fit the Freundlich isotherm and pseudo-second order kinetics.


Assuntos
Galactanos/química , Mananas/química , Compostos de Mercúrio/isolamento & purificação , Gomas Vegetais/química , Bases de Schiff/síntese química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Reagentes de Ligações Cruzadas/química , Diaminas/química , Epicloroidrina/química , Intoxicação por Metais Pesados , Concentração de Íons de Hidrogênio , Cinética , Intoxicação/prevenção & controle , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...